巴黎人票APP

<small id='Ukqwkx'></small><noframes id='Ukqwkx'>

  • <tfoot id='Ukqwkx'></tfoot>

      <legend id='Ukqwkx'><style id='Ukqwkx'><dir id='Ukqwkx'><q id='Ukqwkx'></q></dir></style></legend>
      <i id='Ukqwkx'><tr id='Ukqwkx'><dt id='Ukqwkx'><q id='Ukqwkx'><span id='Ukqwkx'><b id='Ukqwkx'><form id='Ukqwkx'><ins id='Ukqwkx'></ins><ul id='Ukqwkx'></ul><sub id='Ukqwkx'></sub></form><legend id='Ukqwkx'></legend><bdo id='Ukqwkx'><pre id='Ukqwkx'><center id='Ukqwkx'></center></pre></bdo></b><th id='Ukqwkx'></th></span></q></dt></tr></i><div id='Ukqwkx'><tfoot id='Ukqwkx'></tfoot><dl id='Ukqwkx'><fieldset id='Ukqwkx'></fieldset></dl></div>

          <bdo id='Ukqwkx'></bdo><ul id='Ukqwkx'></ul>

        1. 暖通空调杂志社>期刊目次>2019年>第2期

          基于数据挖掘的冷水机组能耗预测

          Energy consumption prediction of chillers based on data mining

          沈家沁[1] 陈焕新[1] 郭亚宾[1] 周生荣[2]
          [1]华中科技大学 [2]苏黎世联邦理工学院

          摘要:

          为了充分利用能源站冷水机组实际运行数据,提高能耗预测准确率,提出了一种基于数据挖掘算法的冷水机组能耗预测模型。该模型包含3个主要步骤:数据预处理、模型建立及分析、结果表述。在模型选择上,利用支持向量机、径向基函数神经网络及决策树3种算法建模并对比分析。结果表明:基于数据挖掘的能耗预测模型有较好的实用性与可靠性;相比其他2种模型,径向基函数神经网络模型的均方根误差值平均降低了0.661,相关系数达到0.999,即径向基函数神经网络的能耗预测准确率最高,建模效果最佳。

          关键词:冷水机组,能耗预测,数据挖掘,支持向量机,径向基函数,神经网络,决策树

          Abstract:

          In order to make full use of the actual operation data of chillers in energy station to improve the accuracy of energy consumption prediction, presents an energy consumption prediction model based on data mining algorithm. The model consists of three main steps: data preprocessing, modeling and analysis, and result presentation. Selects three kinds of algorithms of support vector machine, radial basis function neural network and decision tree for modeling and comparison. The results show that the energy consumption prediction model based on data mining has good practicability and reliability. Compared with the other two models, the root mean square error of the radial basis function neural network model is reduced by 0.661 and the correlation coefficient is 0.999. The radial basis function neural network has the highest accuracy of energy consumption prediction and the best modeling effect.

          Keywords:chiller,energyconsumptionprediction,datamining,supportvectormachine,radialbasisfunction,neuralnetwork,decisiontree

              你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

              如果你还没注册,请赶紧点此注册吧!

              如果你已经注册但还没登录,请赶紧点此登录吧!