巴黎人票APP

  • <tr id='Otykqq'><strong id='Otykqq'></strong><small id='Otykqq'></small><button id='Otykqq'></button><li id='Otykqq'><noscript id='Otykqq'><big id='Otykqq'></big><dt id='Otykqq'></dt></noscript></li></tr><ol id='Otykqq'><option id='Otykqq'><table id='Otykqq'><blockquote id='Otykqq'><tbody id='Otykqq'></tbody></blockquote></table></option></ol><u id='Otykqq'></u><kbd id='Otykqq'><kbd id='Otykqq'></kbd></kbd>

    <code id='Otykqq'><strong id='Otykqq'></strong></code>

    <fieldset id='Otykqq'></fieldset>
          <span id='Otykqq'></span>

              <ins id='Otykqq'></ins>
              <acronym id='Otykqq'><em id='Otykqq'></em><td id='Otykqq'><div id='Otykqq'></div></td></acronym><address id='Otykqq'><big id='Otykqq'><big id='Otykqq'></big><legend id='Otykqq'></legend></big></address>

              <i id='Otykqq'><div id='Otykqq'><ins id='Otykqq'></ins></div></i>
              <i id='Otykqq'></i>
            1. <dl id='Otykqq'></dl>
              1. 暖通空调杂志社>期刊目次>2019年>第3期

                基于在线减法聚类的变频水泵模糊建模方法

                Fuzzy modeling method of variable frequency pump based on online subtractive clustering

                于昊 张吉礼
                大连理工大学

                摘要:

                水泵模型的建立是研究集中空调水系统节能优化控制的基础,现阶段水系统优化控制模型大多通过曲线拟合方式建立,这种方式存在精度有限、在线调整困难、通用性差等问题。引入了基于模糊思想的建模方法,并将其与在线减法聚类相结合,实现模糊模型的在线更新和修正。该方法将水泵的运行数据按不同运行工况归类,并利用这些数据样本逐渐扩充和完善模型中的模糊规则。通过实际水泵在多工况下产生的运行数据拟合出水泵模型,对本文所提算法进行了对比和验证。结果证明该算法具有较强的自学习、自调整能力,同时具有较好的通用性和适应性。

                关键词:变频水泵,水泵模型,模糊建模,在线减法聚类,数据驱动

                Abstract:

                 The establishment of pump model is the basis for studying the energy saving optimization control of the central air conditioning water system. At present, most of the water system optimization control models are established by curve fitting. This method has problems such as limited accuracy, difficulty in online adjustment, and poor versatility. Presents a fuzzy modeling method and combines with online subtractive clustering to realize online update and correction of the fuzzy model. The method classifies the running data of the pump according to different operating conditions, and gradually expands and improves the fuzzy rules in the model using these data samples. Fits the pump model by the actual operating data of the pump under multiple conditions, and compares and verifies the proposed algorithm. The results show that the algorithm has strong self-learning and self-adjusting ability, with good versatility and adaptability.

                Keywords:variablefrequencypump,pumpmodel,fuzzymodeling,onlinesubtractiveclustering,datadriven

                    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

                    如果你还没注册,请赶紧点此注册吧!

                    如果你已经注册但还没登录,请赶紧点此登录吧!