巴黎人票APP

<small id='Sjapxm'></small><noframes id='Sjapxm'>

  • <tfoot id='Sjapxm'></tfoot>

      <legend id='Sjapxm'><style id='Sjapxm'><dir id='Sjapxm'><q id='Sjapxm'></q></dir></style></legend>
      <i id='Sjapxm'><tr id='Sjapxm'><dt id='Sjapxm'><q id='Sjapxm'><span id='Sjapxm'><b id='Sjapxm'><form id='Sjapxm'><ins id='Sjapxm'></ins><ul id='Sjapxm'></ul><sub id='Sjapxm'></sub></form><legend id='Sjapxm'></legend><bdo id='Sjapxm'><pre id='Sjapxm'><center id='Sjapxm'></center></pre></bdo></b><th id='Sjapxm'></th></span></q></dt></tr></i><div id='Sjapxm'><tfoot id='Sjapxm'></tfoot><dl id='Sjapxm'><fieldset id='Sjapxm'></fieldset></dl></div>

          <bdo id='Sjapxm'></bdo><ul id='Sjapxm'></ul>

        1. 暖通空调杂志社>期刊目次>2019年>第5期

          基于灰色神经网络模型的区域供热负荷预测研究

          Prediction of district heating load based on grey neural network model

          刘鹏飞[1] 李锐[1] 王岩[2]
          [1]北京建筑大学 [2]中国建筑设计研究院有限公司

          摘要:

          通过灰色关联分析法对区域供热负荷影响因素进行了评价,并将灰色预测与BP神经网络算法相结合,建立了灰色神经网络结构,能够对影响供热负荷的因素进行筛选,并对供热负荷进行预测。对某区域供热负荷进行了供热负荷预测与验证,通过对比筛选不同影响因素灰色神经网络的预测结果与误差,表明灰色神经网络模型在热负荷预测中能够选择合适的影响因素,排除关联度低的影响因素,可提高供热负荷预测的准确性,为区域供热负荷的预测提供理论依据。

          关键词:区域供热,负荷预测,灰色神经网络,影响因素,灰色关联分析,BP神经网络,组合模型

          Abstract:

          Evaluates the influence factors of district heating load by grey relativity analysis, and establishes a structure of grey neural network by combining grey prediction with BP neural network algorithm, which can screen the factors affecting the heating load and predict the heating load. Predicts and verifies the heating load of a district heating system. By comparing and screening the prediction results and errors of grey neural networks with different influence factors, the results show that the grey neural network model can select the appropriate influence factors and exclude the influence factors with low relativity degree in heating load prediction, improve the accuracy of heating load prediction, and provide a theoretical basis for district heating load prediction.

          Keywords:districtheating,loadprediction,greyneuralnetwork,influencefactor,greyrelativityanalysis,BPneuralnetwork,combinedmodel

              你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

              如果你还没注册,请赶紧点此注册吧!

              如果你已经注册但还没登录,请赶紧点此登录吧!